4 Calculations Used in Analytical Chemisty

4A SOME IMPORTANT UNITS OF MEASUREMENT

4A-1 Sl Units

SI Base Units			
Physical Quantity	Name of unit	Abbreviation	
International system of units			
Mass	kilogram	$\mathbf{k g}$	
Length	(SI)		
Time	second	\mathbf{m}	
Temperature	kelvin	s	
Amout of substance	mole	K	
Electric current	ampere	mol	
Luminous intensity	candela	A	

Prefixes for units

Prefix	Abbreviation	Multiplier	Prefix	Abbreviation	Multiplier
yotta-	Y	10^{24}	deci-	d	10^{-1}
zetta-	Z	10^{21}	centi-	c	10^{-2}
exa-	E	10^{18}	milli-	m	10^{-3}
peta-	P	10^{15}	micro-	μ	10^{-6}
tera-	T	10^{12}	nano-	n	10^{-9}
giga-	G	10^{9}	pico-	p	10^{-12}
mega-	M	10^{6}	femto-	f	10^{-15}
kilo-	k	10^{3}	atto-	a	10^{-18}
hecto-		10^{2}	zepto-	z	10^{-21}
deca-	da	10	yocto-	y	10^{-24}

angstrom (\AA) : non-SI unit of length $=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$.

4A-2 The Distinction Between Mass and Weight

Mass: invariant measure of the amount of matter in an object
Weight: the force of gravitational attraction between that matter and earth

$$
W=\boldsymbol{m} \times \boldsymbol{g} \quad \begin{array}{ll}
W: \text { weight of an object, } m: \text { mass, } \\
g: \text { acceleration due to gravity }
\end{array}
$$

4A-3 The Mole

Avogadro's number (6.022×10^{23})
the molar mass of formaldehyde $\mathrm{CH}_{2} \mathrm{O}$
 $=30.0 \mathrm{~g} / \mathrm{mol} \mathrm{CH}_{2} \mathrm{O}$
the molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} & =\frac{6 \mathrm{~mol} \mathrm{C}}{\mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}} \times \frac{12.0 \mathrm{~g}}{\mathrm{molC}}+\frac{12 \mathrm{~mol} \mathrm{H}}{\mathrm{molCH}_{2} \mathrm{O}} \times \frac{1.0 \mathrm{~g}}{\mathrm{molH}}+\frac{6 \mathrm{~mol} \mathrm{O}_{\mathrm{mol} \mathrm{CH}_{2} \mathrm{O}}^{\mathrm{molO}}}{} \times \frac{16.0 \mathrm{~g}}{\mathrm{~mol}} \\
& =180.0 \mathrm{~g} / \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{aligned}
$$

* Millimole $(\mathrm{mmol})=10^{-\mathbf{3}} \mathbf{~ m o l}$
$1 \mathrm{mfw}=10^{-3} \mathrm{fw}$
no. of moles of a species $\mathrm{X}\left(\right.$ no. mol A): $\quad n_{X}=\frac{m_{X}}{M_{X}}$
Ex. 4-1. How many moles and millimoles of benzoic acid ($\mathrm{M}=122.1 \mathrm{~g} / \mathrm{mol}$) are contained in 2.00 g of the pure acid?
amount $\mathrm{g} \mathrm{HBz}=2.00 \mathrm{~g} \times(1 \mathrm{~mol} / 122.1 \mathrm{~g})=0.0164 \mathrm{~mol} \mathrm{HBz}$ amount $\mathrm{g} \mathrm{HBz}=2.00 \mathrm{~g} \times(1 \mathrm{mmol} / 0.1221 \mathrm{~g})=16.4 \mathrm{mmol} \mathrm{HBz}$

Ex. 4-2. How many grams of $\mathrm{Na}^{+}(22.99 \mathrm{~g} / \mathrm{mol})$ are contained in 25.00 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

 ($142.0 \mathrm{~g} / \mathrm{mol}$)? amount $\mathrm{Na}_{2} \mathrm{SO}_{4}=25.00 \mathrm{~g} \times(1 \mathrm{~mol} / 142.0 \mathrm{~g})=0.17606 \mathrm{~mol}$ since 1 mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 2 mol of Na^{+}, amount $\mathrm{Na}^{+}=2 \times 0.17606 \mathrm{~mol}=0.35211 \mathrm{~mol}$ mass $\mathrm{Na}^{+}=0.35211 \mathrm{~mol} \times 22.99 \mathrm{~g} / \mathrm{mol}=8.10 \mathrm{~g}$
4B SOLUTIONS AND THEIR CONCENTRATIONS
 4B-1 Concentration of Solutions

Molar Concentration (C)

$$
C_{X}=\frac{n_{X}}{V} \text {, molarity }=\mathrm{M}=\frac{\text { no. mol solute }}{\text { no. } \mathrm{L} \text { solution }}=\frac{\text { no. mmol solute }}{\text { no. mL solution }}
$$

Ex 4－3 Calculate the molar conc．of ethanol in an aqueous solution that contains 2.30 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(46.07 \mathrm{~g} / \mathrm{mol})$ in 3.50 L of solution．
no． $\mathrm{mol}=2.30 \mathrm{~g} \times(1 \mathrm{~mol} / 46.07 \mathrm{~g})=0.04992 \mathrm{~mol}$
$C_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=0.04992 \mathrm{~mol} / 3.50 \mathrm{~L}=0.01426 \mathrm{~mol} / \mathrm{L}=0.0143 \mathrm{M}$

Analytical Molarity：total number of moles of a solute in $\mathbf{1 L}$ solution

（How a solution has been prepared？）
Ex： $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ soln \rightarrow dissolving 1.0 mol or $98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in water and diluting to exactly 1.0 L ．
Equilibrium or Species Molarity：the molar conc．of a particular species in a soln．at equilibrium

Formal Concentration（Formality，F）：analytical concentration

Ex： 1.00 F NaOH or $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ equilibrium molar conc．$=0.00 \mathrm{M}$
Ex 4－4．Calculate the analytical and equilibrium molar conc．of the solute species in an aqueous solution that contains $285 \mathbf{m g}$ of trichloroacetic acid （ $\mathrm{Cl}_{3} \mathrm{CCOOH}, 163.4 \mathrm{~g} / \mathrm{mol}$ ）in 10.0 mL （the acid is 73% ionized in water）． no． $\mathrm{mol} \mathrm{HA}=285 \mathrm{mg} \times(1 \mathrm{~g} / 1000 \mathrm{mg}) \times(1 \mathrm{~mol} / 163.4 \mathrm{~g})=1.744 \times 10^{-3} \mathrm{~mol}$ $C_{\mathrm{HA}}=\frac{1.744 \times 10^{-3} \mathrm{~mol} \mathrm{HA}}{10.0 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=0.174 \frac{\mathrm{~mol} \mathrm{HA}}{\mathrm{L}}=0.174 \mathrm{M}$

$$
\begin{array}{cccc}
\hline \text { HA } & \Leftrightarrow \begin{array}{cc}
\mathrm{H}^{+} \\
\text {Initial } 100 \%
\end{array} & \begin{array}{c}
\mathrm{A}^{-} \\
0 \%
\end{array} & {[\mathrm{HA}]=0.174 \mathrm{~mol} / \mathrm{L} \times 0.27} \\
\text { 平衡後 } 27 \% & 73 \% & 73 \% & \\
& & & \\
& & & \\
& & & \\
& & \left.\mathrm{H}_{3} \mathrm{O}^{+}\right] & =\left[\mathrm{A}^{-}\right]=\mathrm{CHA}-[\mathrm{HA}] \\
& =0.174-0.047=0.127 \mathrm{M} \\
\hline
\end{array}
$$

Ex 4－5．Describe the preparation of 2.00 L of $0.108 \mathrm{M} \mathrm{BaCl}_{2}$ from $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ （ $244 \mathrm{~g} / \mathrm{mol}$ ）．
$2.00 \mathrm{~L} \times 0.108 \mathrm{~mol} / \mathrm{L}=0.216 \mathrm{~mol} \mathrm{BaCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$0.216 \mathrm{~mol} \times 244 \mathrm{~g} / \mathrm{mol}=52.8 \mathrm{~g} \mathrm{BaCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Dissolve 52.8 g of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water and dilute to 2.00 L ．

Ex 4-6. Describe the preparation of 500 mL of $0.074 \mathrm{M} \mathrm{Cl}^{-}$from solid $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($244 \mathrm{~g} / \mathrm{mol}$).

$$
\left.\begin{array}{rl}
\text { mass } \mathrm{BaCl}_{2} & \cdot 2 \mathrm{H}_{2} \mathrm{O}=\frac{0.0740 \mathrm{~mol} \mathrm{Cl}}{\mathrm{~L}}
\end{array}\right)=0.500 \mathrm{~L} \times \frac{1 \mathrm{~mol} \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{Cl}} .
$$

Dissolve 4.52 g of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water and dilute to 500 mL .

Percent Concentration (\%, parts per hundred)

$\text { weight } \%(\mathrm{w} / \mathrm{w})=\frac{\text { weight solute }}{\text { weight solution }} \times 100 \%$	$\begin{gathered} 37 \% \mathrm{HCl}(\mathrm{w} / \mathrm{w}) \text { soln: } 37 \mathrm{~g} \mathrm{HCl} \text { per } \\ 100 \mathrm{~g} \text { soln. } \\ 70 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w}) \text { soln } \end{gathered}$	
$\text { Volume } \%(\mathrm{v} / \mathrm{v})=\frac{\text { volume solute }}{\text { volume solution }} \times 100 \%$	$5 \% \mathrm{CH}_{3} \mathrm{OH}(\mathrm{v} / \mathrm{v})$ soln: diluting $5.0 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}$ with $\mathrm{H}_{2} \mathrm{O}$ to 100 mL .	
$=\frac{\text { weight solute, } \mathrm{g}}{\text { volume solution, } \mathrm{mL}} \times 100 \%$		$5 \% \mathrm{AgNO}_{3}(\mathrm{w} / \mathrm{v})$ soln: dissolving $5 \mathrm{~g} \mathrm{AgNO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ to 100 mL .

Parts Per Million and Parts Per Billion (ppm \& ppb)

$\mathrm{C}_{\mathrm{ppm}}=($ mass of solute $/$ mass of soln $) \times 10^{6} \mathrm{ppm} \quad 1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$
$\mathrm{C}_{\mathrm{ppb}}=\left(\right.$ mass of solute/mass of soln) $\times 10^{9} \mathrm{ppb} \quad 1 \mathrm{ppb}=1 \mu \mathrm{~g} / \mathrm{L}$
$\mathrm{C}_{\mathrm{ppt}}=($ mass of solute $/$ mass of soln $) \times 10^{3} \mathrm{ppt}$
Ex 4-7. What is the molarity of K^{+}in an aqueous solution that contains 63.3 ppm of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(329.2 \mathrm{~g} / \mathrm{mol})$.

$$
\mathrm{C}_{\mathrm{K}}^{+}=63.3 \mathrm{~g} / 10^{6} \mathrm{~g} \times 10^{3} \mathrm{~g} / \mathrm{L} \times(1 \mathrm{~mol} / 329.2 \mathrm{~g}) \times 3=5.77 \times 10^{-4} \mathrm{M}
$$

Solution-Diluent Volume Ratios

1:4 : dilute one volume with three volumes.

p-Function or p-value

For chemical species X :

$$
\mathrm{pX}=-\log [\mathrm{X}] \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Ex: 4-8. $\quad 2.00 \times 10^{-3} \mathbf{M ~ N a C l}$ and $5.4 \times 10^{-4} \mathbf{M ~ H C l}$ solution

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.4 \times 10^{-4}\right)=3.27 \\
\mathrm{pNa}=-\log \left(2.00 \times 10^{-3}\right)=2.699 \\
\mathrm{pCl}=-\log \left(2.00 \times 10^{-3}+5.4 \times 10^{-4}\right)=-\log \left(2.54 \times 10^{-3}\right)=2.595
\end{gathered}
$$

Ex: 4-9. Calculate the molar conc. of Ag^{+}in a solution that has a pAg of 6.372.

$$
\left[\mathrm{Ag}^{+}\right]=\operatorname{antilog}(-6.372)=4.25 \times 10^{-7}
$$

4B-2 Density and Specific Gravity of Solutions

*Density: mass per unit volume, $\mathrm{kg} / \mathrm{m}^{3}$, or $\mathrm{g} / \mathrm{mm}^{3}$. (kg / L or g / mL)
*Specific Gravity: the ratio of the mass of a substances to the mass of an equal volume of water ($4{ }^{\circ} \mathrm{C}$).

Ex. 4-10. Calculate the molar conc. of $\mathrm{HNO}_{3}(63.0 \mathrm{~g} / \mathrm{mol})$ in a soln that has a specific gravity of 1.42 and is $70 \% \mathbf{H N O}_{3}(\mathrm{w} / \mathrm{w})$.

$$
\begin{gathered}
1.42 \mathrm{Kg} / \mathrm{L} \times 10^{3} \mathrm{~g} / \mathrm{Kg} \times 70 \mathrm{~g} / 100 \mathrm{~g}=994 \mathrm{~g} / \mathrm{L} \\
\mathrm{C}_{\mathrm{HNO}_{3}}=994 \mathrm{~g} / \mathrm{L} \times(1 \mathrm{~mol} / 63.0 \mathrm{~g})=15.8 \mathrm{~mol} / \mathrm{L}=16 \mathrm{M}
\end{gathered}
$$

Ex. 4-11. Describe the preparation of 100 mL of 6.0 M HCl from a conc. reagent that has a specific gravity of 1.18 and is $37 \%(w / w) \mathbf{H C l}(36.5 \mathrm{~g} / \mathrm{mol})$.
$\mathrm{C}_{\mathrm{HCl}}=1.18 \times 10^{3} \mathrm{~g} / \mathrm{L} \times 37 \mathrm{~g} / 100 \mathrm{~g} \times(1 \mathrm{~mol} / 36.5 \mathrm{~g})=12.0 \mathrm{M}$ amount $\mathrm{HCl}=100 \mathrm{~mL} \times(1 \mathrm{~L} / 1000 \mathrm{~mL}) \times 6.0 \mathrm{~mol} / \mathrm{L}=0.600 \mathrm{~mol}$ vol conc. reagent $=0.600 \mathrm{~mol} \times(1 \mathrm{~L} / 12.0 \mathrm{~mol})=0.0500 \mathrm{~L}$ Dilute 50 mL of the conc. reagent to 100 mL .

Specific Gravities of Commercial Concentrated Acids and Bases

Reagent	Concentration \% (w/w)	Specific Gravity
Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$	$\mathbf{9 9 . 7}$	$\mathbf{1 . 0 5}$
Ammonia, $\mathrm{NH}_{4} \mathrm{OH}$	$\mathbf{2 9 . 0}$	$\mathbf{0 . 9 0}$
Hydrochloric acid, HCl	$\mathbf{3 7 . 2}$	$\mathbf{1 . 1 9}$
Hydrofluoric acid, HF	$\mathbf{4 9 . 5}$	1.15
Nitric acid, HNO_{3}	$\mathbf{7 0 . 5}$	$\mathbf{1 . 4 2}$
Perchloric acid, HClO_{4}	$\mathbf{7 1 . 0}$	$\mathbf{1 . 6 7}$
Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathbf{8 6 . 0}$	$\mathbf{1 . 7 1}$
Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathbf{9 6 . 5}$	$\mathbf{1 . 8 4}$

4C CHEMICAL STOICHIOMETRY

Stoichiometry: the mass relationships among reacting chemical species.

4C-1 Empirical Formulas and Molecular Formulas

Empirical formula: the simplest whole-number ratio of atoms in a chemical compound.
Molecular formula: the number of atoms in a molecule.
Structural formula:

	Empirical formula	Molecular formula	Structural formula
formalaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{O}$	HCHO
acetic acid	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{COOH}$
glyceraldehyde	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	
glucose	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	
ethanol		$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Dimethyl ether		$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{OCH}$

4C-2 Stoichiometric Calculations

Mass	Moles	\rightarrow	Moles	\rightarrow	Mass
(1)		(2)		(3)	
Formula weight		Stoichiometric ratio		Formula weight	

Ex. 4-12. What Mass of $\mathrm{AgNO}_{3}(169.9 \mathrm{~g} / \mathrm{mol})$ is needed to convert 2.33 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106.0 \mathrm{~g} / \mathrm{mol})$ to $\mathrm{Ag}_{2} \mathrm{CO}_{3}$? (b) What mass of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(275.7$ $\mathrm{g} / \mathrm{mol}$) will be formed?
(a) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

Step 1: $n_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=2.33 \mathrm{~g} \times(1 \mathrm{~mol} / 106.0 \mathrm{~g})=0.02198 \mathrm{~mol}$
Step 2: $n_{\mathrm{AgNO}_{3}}=0.02198 \mathrm{~mol} \times(2 / 1)=0.04396 \mathrm{~mol} \mathrm{AgNO} 3$
Step 3: $m_{\mathrm{AgNO}_{3}}=0.04396 \mathrm{~mol} \times 169.9 \mathrm{~g} / \mathrm{mol}=7.47 \mathbf{g ~ A g N O} 3$
(b) $n_{\mathrm{Ag}_{2} \mathrm{CO}_{3}}=n_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=0.02198 \mathrm{~mol}$

$$
m_{\mathrm{Ag}_{2} \mathrm{CO}_{3}}=0.02198 \mathrm{~mol} \times 275.7 \mathrm{~g} / \mathrm{mol}=\mathbf{6 . 0 6} \mathbf{g ~ A g}_{2} \mathbf{C O}_{3}
$$

Ex. 4-13. What mass of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(275.7 \mathrm{~g} / \mathrm{mol})$ is formed when 25.0 mL of 0.200 M AgNO_{3} are mixed with 50.0 mL of $0.0800 \mathrm{M} \mathrm{Na} \mathrm{CO}_{3}$?

$$
\begin{aligned}
& n_{\mathrm{AgNO}_{3}}=25.0 \mathrm{~mL} \times 0.200 \mathrm{M} \mathrm{AgNO}_{3}=5.00 \mathrm{mmol} \mathrm{AgNO}_{3} \\
& n_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=50.0 \mathrm{~mL} \times 0.0800 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}=4.00 \mathrm{mmol} \mathrm{Na} \\
& \mathrm{CO}_{3} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{AgNO} \\
& 3(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq}) \\
& m_{\mathrm{Ag}_{2} \mathrm{CO}_{3}}=5.00 \mathrm{mmol} \times 1 / 2 \times 0.2757 \mathrm{~g} / \mathrm{mmol}=0.689 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

Ex. 4-14. What will be the molar analytical $\mathrm{Na}_{2} \mathrm{CO}_{3}$ conc. in the soln produced when 25.0 mL of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ is mixed with 50.0 mL of 0.0800 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
$n_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=4.00 \mathrm{mmol}-(5.00 \mathrm{mmol} \times 1 / 2)=1.50 \mathrm{mmol} \mathrm{Na} \mathrm{CO}_{3}$

