4 Calculations Used in Analytical Chemisty

4A SOME IMPORTANT UNITS OF MEASUREMENT

4A-1 Sl Units

SI Base Units			
Physical Quantity	Name of unit	Abbreviation	International system of units
Mass	kilogram	kg	(SI)
Length	meter	m	
Time	second	S	
Temperature	kelvin	K	
Amout of substance	mole	mol	
Electric current	ampere	Α	
Luminous intensity	candela	cd	

Prefixes for units

Prefix	Abbreviation	Multiplier	Prefix	Abbreviation	Multiplier
yotta-	Y	10²⁴	deci-	d	10 ⁻¹
zetta-	Z	10^{21}	centi-	с	10⁻²
exa-	Ε	10¹⁸	milli-	m	10⁻³
peta-	Р	10 ¹⁵	micro-	μ	10⁻⁶
tera-	Т	10 ¹²	nano-	n	10⁻⁹
giga-	G	10⁹	pico-	р	10 ⁻¹²
mega-	Μ	10^{6}	femto-	f	10 ⁻¹⁵
kilo-	k	10^{3}	atto-	a	10⁻¹⁸
hecto-	h	10^{2}	zepto-	Ζ	10 ⁻²¹
deca-	da	10	yocto-	У	10⁻²⁴

angstrom (Å) : non-SI unit of length = $0.1 \text{ nm} = 10^{-10} \text{ m}$.

4A-2 The Distinction Between Mass and Weight

Mass: invariant measure of the amount of matter in an object *Weight:* the force of gravitational attraction between that matter and earth

$W = m \times g$	W: weight of an object, m : mass,
	g: acceleration due to gravity

4A-3 The Mole

Avogadro's number (6.022×10^{23})

the molar mass of formaldehyde CH₂O

$$M_{CH_2O} = \frac{1 \mod C}{\mod CH_2O} \times \frac{12.0g}{\mod C} + \frac{2 \mod H}{\mod CH_2O} \times \frac{1.0g}{\mod H} + \frac{1 \mod O}{\mod CH_2O} \times \frac{16.0g}{\mod O}$$
$$= 30.0 \text{ g/mol } CH_2O$$

the molar mass of glucose $C_6H_{12}O_6$

$$M_{C_{6}H_{12}O_{6}} = \frac{6 \text{mol } C}{\text{mol } CH_{2}O} \times \frac{12.0\text{g}}{\text{mol } C} + \frac{12 \text{mol } H}{\text{mol } CH_{2}O} \times \frac{1.0\text{g}}{\text{mol } H} + \frac{6 \text{mol } O}{\text{mol } CH_{2}O} \times \frac{16.0\text{g}}{\text{mol } O}$$
$$= 180.0 \text{ g/mol } C_{6}H_{12}O_{6}$$

* Millimole(mmol) = 10^{-3} mol 1 mfw = 10^{-3} fw

no. of moles of a species X (no. mol A): $n_X = \frac{m_X}{M_X}$

Ex. 4-1. How many moles and millimoles of benzoic acid (M=122.1 g/mol) are contained in 2.00 g of the pure acid?

amount g HBz = $2.00 \text{ g} \times (1 \text{ mol}/122.1 \text{ g}) = 0.0164 \text{ mol HBz}$ amount g HBz = $2.00 \text{ g} \times (1 \text{ mmol}/0.1221 \text{ g}) = 16.4 \text{ mmol HBz}$

Ex. 4-2. How many grams of Na⁺ (22.99 g/mol) are contained in 25.00 g of Na₂SO₄ (142.0 g/mol)?

amount Na₂SO₄ = 25.00 g × (1 mol/142.0 g) = 0.17606 mol since 1 mol of Na₂SO₄ contains 2 mol of Na⁺, amount Na⁺ = 2 × 0.17606 mol = 0.35211 mol mass Na⁺ = 0.35211 mol × 22.99 g/mol = 8.10 g

4B SOLUTIONS AND THEIR CONCENTRATIONS 4B-1 Concentration of Solutions

Molar Concentration (C)

 $C_X = \frac{n_X}{V}$, molarity = M = $\frac{\text{no. mol solute}}{\text{no. L solution}} = \frac{\text{no. mmol solute}}{\text{no. mL solution}}$

Ex 4-3 Calculate the molar conc. of ethanol in an aqueous solution that contains 2.30 g of C₂H₅OH (46.07 g/mol) in 3.50 L of solution.

no. mol = 2.30 g × (1 mol/46.07 g) = 0.04992 mol $C_{C_2H_5OH} = 0.04992 \text{ mol}/3.50 \text{ L} = 0.01426 \text{ mol}/\text{L} = 0.0143 \text{ M}$

Analytical Molarity: total number of moles of a solute in 1 L solution

(How a solution has been prepared?)

Ex: 1.0 M H₂SO₄ soln \rightarrow dissolving 1.0 mol or 98 g H₂SO₄ in water and diluting to exactly 1.0 L.

Equilibrium or Species Molarity: the molar conc. of a particular species in a soln. at equilibrium

Formal Concentration (Formality, F): analytical concentration

Ex: 1.00 F NaOH or $H_2SO_4 \rightarrow$ equilibrium molar conc. = 0.00 M

Ex 4-4. Calculate the analytical and equilibrium molar conc. of the solute species in an aqueous solution that contains 285 mg of trichloroacetic acid (Cl₃CCOOH, 163.4 g/mol) in 10.0 mL (the acid is 73 % ionized in water). no. mol HA = 285 mg × (1 g/1000 mg) × (1 mol/163.4 g) = 1.744×10^{-3} mol $C_{\text{HA}} = \frac{1.744 \times 10^{-3} \text{ mol HA}}{10.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 0.174 \frac{\text{mol HA}}{\text{L}} = 0.174 \text{ M}$ \Leftrightarrow H⁺ + A⁻ HA $[HA] = 0.174 \text{ mol/L} \times 0.27$ Initial 100% 0% 0% = 0.047 mol/L = 0.047 M平衡後 27% 73% 73% $[H_3O^+] = [A^-] = C_{HA} - [HA]$ = 0.174 - 0.047 = 0.127 M

Ex 4-5. Describe the preparation of 2.00 L of 0.108 M BaCl₂ from BaCl₂ · 2H₂O (244 g/mol).

 $2.00 L \times 0.108 mol/L = 0.216 mol BaCl_2 \cdot 2H_2O$ $0.216 mol \times 244 g/mol = 52.8 g BaCl_2 \cdot 2H_2O$ **Dissolve 52.8 g of BaCl_2 \cdot 2H_2O in water and dilute to 2.00 L.** Ex 4-6. Describe the preparation of 500 mL of 0.074 M Cl⁻ from solid BaCl₂ · 2H₂O (244 g/mol). mass BaCl₂ · 2H₂O = $\frac{0.0740 \text{ mol Cl}}{L} \times 0.500 \text{ L} \times \frac{1 \text{ mol BaCl}_2 \cdot 2H_2O}{2 \text{ mol Cl}}$ $\times \frac{244.3 \text{ g BaCl}_2 \cdot 2H_2O}{\text{mol BaCl}_2 \cdot 2H_2O} = 4.52 \text{ g BaCl}_2 \cdot 2H_2O$ Dissolve 4.52 g of BaCl₂ · 2H₂O in water and dilute to 500 mL.

Percent Concentration (%, parts per hundred)

weight % (w/w) = $\frac{\text{weight solute}}{\text{weight solution}} \times 100\%$	37 % HCl (w/w) soln: 37 g HCl per 100 g soln. 70 % HNO ₃ (w/w) soln	
Volume % (v/v) = $\frac{\text{volume solute}}{\text{volume solution}} \times 100\%$	5 % CH ₃ OH (v/v) soln: diluting 5.0mL CH ₃ OH with H ₂ O to 100mL.	
weight/volume % (w/v) = $\frac{\text{weight solute, g}}{\text{volume solution, f}}$	$ \begin{array}{c c} 5 & & & & \\ \hline 5 & & & \\ \hline mL & & & \\ \hline mL & & & \\ \hline mL & & & \\ \hline 100\% & & & \\ \hline 100\% &$	

Parts Per Million and Parts Per Billion (ppm & ppb)

$C_{ppm} = (mass of solute/mass of soln) \times 10^6 ppm$	1 ppm = 1 mg/L
$C_{ppb} = (mass of solute/mass of soln) \times 10^9 ppb$	1 ppb = 1 μ g/L
$C_{ppt} = (mass of solute/mass of soln) \times 10^3 ppt$	

<u>Ex 4-7.</u> What is the molarity of K^+ in an aqueous solution that contains 63.3 ppm of $K_3Fe(CN)_6$ (329.2 g/mol).

 C_{K}^{+} = 63.3 g/10⁶ g × 10³ g/L × (1 mol/329.2 g) × 3 = 5.77 × 10⁻⁴ M

Solution-Diluent Volume Ratios

1:4 : dilute one volume with three volumes.

p-Function or p-value

For chemical species X: $pX = -\log [X]$ $pH = -\log [H^+]$

Ex: 4-8. 2.00 \times 10⁻³ M NaCl and 5.4 \times 10⁻⁴ M HCl solution

 $pH = -\log [H^+] = -\log (5.4 \times 10^{-4}) = 3.27$

 $pNa = -\log (2.00 \times 10^{-3}) = 2.699$

 $pCl = -\log (2.00 \times 10^{-3} + 5.4 \times 10^{-4}) = -\log (2.54 \times 10^{-3}) = 2.595$

Ex: 4-9. Calculate the molar conc. of Ag^+ in a solution that has a pAg of 6.372. [Ag^+] = antilog (- 6.372) = 4.25×10^{-7}

4B-2 Density and Specific Gravity of Solutions

*Density: mass per unit volume, kg/m³, or g/mm³. (kg/L or g/mL) *Specific Gravity: the ratio of the mass of a substances to the mass of an equal volume of water (4 °C).

Ex. 4-10. Calculate the molar conc. of HNO₃ (63.0 g/mol) in a soln that has a specific gravity of 1.42 and is 70 % HNO₃ (w/w).

 $1.42 \text{ Kg/L} \times 10^3 \text{ g/Kg} \times 70 \text{g}/100 \text{g} = 994 \text{ g/L}$ $C_{\text{HNO}3} = 994 \text{ g/L} \times (1 \text{ mol}/63.0 \text{ g}) = 15.8 \text{ mol/L} = 16 \text{ M}$

Ex. 4-11. Describe the preparation of 100 mL of 6.0 M HCl from a conc. reagent that has a specific gravity of 1.18 and is 37 % (w/w) HCl (36.5 g/mol).

$$\begin{split} C_{HCl} &= 1.18 \times 10^3 \text{ g/L} \times 37 \text{ g/100 g} \times (1 \text{ mol/36.5 g}) = 12.0 \text{ M} \\ \text{amount } HCl = 100 \text{ mL} \times (1 \text{ L/1000 mL}) \times 6.0 \text{ mol/L} = 0.600 \text{ mol} \\ \text{vol conc. reagent} = 0.600 \text{ mol} \times (1 \text{ L/12.0 mol}) = 0.0500 \text{ L} \\ \textbf{Dilute 50 mL of the conc. reagent to 100 mL.} \end{split}$$

Specific Oravities of Commercial Concentrated Acids and Dases			
Reagent	Concentration % (w/w)	Specific Gravity	
Acetic acid, CH ₃ COOH	99.7	1.05	
Ammonia, NH₄OH	29.0	0.90	
Hydrochloric acid, HCl	37.2	1.19	
Hydrofluoric acid, HF	49.5	1.15	
Nitric acid, HNO ₃	70.5	1.42	
Perchloric acid, HClO ₄	71.0	1.67	
Phosphoric acid, H ₃ PO ₄	86.0	1.71	
Sulfuric acid, H ₂ SO ₄	96.5	1.84	

Specific Gravities of Commercial Concentrated Acids and Bases

4C CHEMICAL STOICHIOMETRY

Stoichiometry: the mass relationships among reacting chemical species.

4C-1 Empirical Formulas and Molecular Formulas

Empirical formula: the simplest whole-number ratio of atoms in a chemical compound.

Molecular formula: the number of atoms in a molecule. *Structural formula:*

	Empirical formula	Molecular	Structural formula
		formula	
formalaldehyde	CH ₂ O	CH_2O	НСНО
acetic acid	CH ₂ O	$C_2H_4O_2$	CH ₃ COOH
glyceraldehyde	CH ₂ O	$C_3H_6O_3$	
glucose	CH ₂ O	$C_6H_{12}O_6$	
ethanol		C ₂ H ₆ O	C ₂ H ₅ OH
Dimethyl ether		C ₂ H ₆ O	CH ₃ OCH ₃

4C-2 Stoichiometric Calculations

Ex. 4-12. What Mass of AgNO₃ (169.9 g/mol) is needed to convert 2.33 g of Na₂CO₃ (106.0 g/mol) to Ag₂CO₃? (b) What mass of Ag₂CO₃ (275.7 g/mol) will be formed?

(a) $Na_2CO_3(aq) + 2 AgNO_3(aq) \rightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$

Step 1: $n_{\text{Na}_2\text{CO}_3} = 2.33 \text{ g} \times (1 \text{ mol}/106.0 \text{ g}) = 0.02198 \text{ mol}$

Step 2: $n_{\text{AgNO}_3} = 0.02198 \text{ mol} \times (2/1) = 0.04396 \text{ mol} \text{AgNO}_3$

Step 3: $m_{\text{AgNO}_3} = 0.04396 \text{ mol} \times 169.9 \text{ g/mol} = 7.47 \text{ g AgNO}_3$

(b) $n_{\text{Ag}_2\text{CO}_3} = n_{\text{Na}_2\text{CO}_3} = 0.02198 \text{ mol}$

 $m_{Ag_2CO_3} = 0.02198 \text{ mol} \times 275.7 \text{ g/mol} = 6.06 \text{ g } Ag_2CO_3$

Ex. 4-13. What mass of Ag₂CO₃ (275.7 g/mol) is formed when 25.0 mL of 0.200M AgNO₃ are mixed with 50.0 mL of 0.0800M Na₂CO₃ ?

 $n_{\text{AgNO}_3} = 25.0 \text{ mL} \times 0.200 \text{ M AgNO}_3 = 5.00 \text{ mmol AgNO}_3$ $n_{\text{Na}_2\text{CO}_3} = 50.0 \text{ mL} \times 0.0800 \text{ M Na}_2\text{CO}_3 = 4.00 \text{ mmol Na}_2\text{CO}_3$ $\text{Na}_2\text{CO}_3 (\text{aq}) + 2 \text{ AgNO}_3 (\text{aq}) \rightarrow \text{ Ag}_2\text{CO}_3 (\text{s}) + 2 \text{ NaNO}_3 (\text{aq})$ $m_{\text{Ag}_2\text{CO}_3} = 5.00 \text{ mmol} \times 1/2 \times 0.2757 \text{ g/mmol} = 0.689 \text{ g Ag}_2\text{CO}_3$

Ex. 4-14. What will be the molar analytical Na₂CO₃ conc. in the soln produced when 25.0 mL of 0.200 M AgNO₃ is mixed with 50.0 mL of 0.0800 M Na₂CO₃?

 $n_{\text{Na}_2\text{CO}_2} = 4.00 \text{ mmol} - (5.00 \text{ mmol} \times 1/2) = 1.50 \text{ mmol} \text{Na}_2\text{CO}_3$

 $C_{Na_2CO_3} = 1.50 \text{ mmol}/(50.0 + 25.0) \text{ mL} = 0.0200 \text{ M} \text{ Na}_2CO_3$