12 Gravimetric Methods of Analysis

Gravimetric analysis: based upon <u>mass measurements</u>

highly accurate and precise.

--- Isolation (pure known substance) & weighing

*Advantages

- 1. accuracy
- 2. single fundamental chemical precipitation reaction

ex: $Cl^- + Ag^+ \rightarrow AgCl(s)$

3. require no accuracy known standard solution

12A Precipitation Gravimetry

1. Precipitation methods

ex: For Calcium in natural water AOAC (Association of Official Analytical Chemists)

$$2NH_{3} + H_{2}C_{2}O_{4} \rightarrow 2NH_{4}^{+} + C_{2}O_{4}^{2}$$

$$Ca^{2+}(aq) + C_{2}O_{4}^{2-}(aq) \rightarrow CaC_{2}O_{4}(s)$$

$$CaC_{2}O_{4} \xrightarrow{\Delta} CaO(s) + CO(g) + CO_{2}(g)$$

2. Volatilization methods

ex: For NaHCO₃ in antacid tablets NaHCO₃(aq) + H₂SO₄ (aq) $\rightarrow \underset{\downarrow}{\text{CO}_2}$ (g) + H₂O (l) + NaHSO₄(aq) absorption tube

12A-1 Properties of Precipitates and Precipitating Agents

**specifically* (rare): reactly only with a single chemical species. dimethylglyoxime $\rightarrow \text{Ni}^{2+}$

*selectively (common): react with a limited number of species.

AgNO₃ \rightarrow Cl⁻, Br⁻, I⁻ & SCN⁻

- 1. Readily filtered and washed free of contaminants.
- 2. Of sufficiently low solubility so that no significant loss of the analyte occurs during filtration and washing.
- 3. Unreactive with constituents of the atmosphere.
- 4. Of known composition after it is dried or, if necessary, ignited.

12A-2 Particle size and filterability of precipitates

Particle size: • colloidal suspensions $(10^{-7} \sim 10^{-4} \text{ cm or } 10^{-6} \sim 10^{-4} \text{ mm})$

ex: Fe(OH)₃ (gelatinous)

- curdy : ex: AgCl
- crystalline ($10^{-2} \sim 10 \text{ mm}$): ex: BaSO₄

• Factors that determine the particle size of precipitates

- 1. ppt solubility
- 2. temperature
- 3. reactant concentrations
- 4. rate at which reactants are mixed

♦ relative supersaturation(RS) or Von Weimarn ratio

$$RS = \frac{Q-S}{S}$$
 Q: conc. of the solute at any instant
S: equilibrium solubility

Particle size	<u> </u>	$\mathbf{RS} \uparrow \rightarrow \mathbf{ppt} \ \mathbf{size} \downarrow (\mathbf{colloidal})$
	$\propto \frac{1}{RS}$	$\mathbf{RS} \downarrow \rightarrow \mathbf{ppt} \mathbf{size} \uparrow (\mathbf{crystalline} \mathbf{solid})$

♦ Mechanism of precipitate formation

- 1. supersaturated soln formed
- 2. nucleation
- 3. particle growth

♦ Experimental Control of Particle Size

* RS $\downarrow, Q\downarrow, S\uparrow \rightarrow$ particle size \uparrow

- 1. dilute sample soln and dilute reagents (Q \downarrow)
- 2. slow addition of precipitating agent with good stirring (Q \downarrow)
- 3. in hot solution (S \uparrow)
- 4. pH control, acidity solution (S \uparrow)

ex: precipitation of calcium oxalate

a. in mildly acidic, calcium oxalate \rightarrow large, easily filtered crystals

```
(moderately soluble)
```

b. adding aqueous ammonia $\rightarrow pH \uparrow \rightarrow completed ppt$

*Precipitates with very low solubilities, such as many sulfides and hydrous oxides, generally form a colloids.

12A-3 Colloidal Precipitates

Coagulation (or agglomeration) of colloids: converting a colloid suspension into a filterable solid.

Adsorption: a process in which a substance (gas, liquid or solid) is held on the surface of a solid. In contrast, absorption, involves retention of a substance within the pores of a solid.

Electric double layer:

- *Coagulation of a colloidal suspension
 - 1. heating: a. \downarrow no. of adsorbed ions and the thickness d₁ of the double layer.
 - b. gain enough kinetic energy to overcome the barrier to close approach posed by the double layer.

2. stirring

3. adding an electrolyte: conc. of counter ions $\uparrow \rightarrow$ shrinkage of the counter-ion layer (Fig. 12-2b) \rightarrow particle can then approach one another more closely and agglomerate.

*Peptization of Colloids

Peptization : a process by which a coagulated colloid returns to its dispersed state.

washing coagulated colloid \rightarrow removal of electrolyte

 \rightarrow volume of the counter-ion layer \uparrow

Peptization is prevented by washing ppt with a soln of a volatile electrolyte. ex: AgCl, washed with a d-HNO₃.

*Treatment of Colloidal Precipitates

Digestion : a process in which a ppt is heated for an hour or more in the soln from which it was formed (the mother liquor)

 \rightarrow \uparrow purity and filterability

- 1. colloidal suspension \rightarrow coagulated to curdy ppt
- 2. small crystalline particles \rightarrow reprecipitated on the large crystalline particles
- 3. impurities tend to dissolve \rightarrow pure crystalline particles

12A-4 Crystalline Precipitates

Methods of Improving Particle Size and Filterability: $\mathbf{Q}\downarrow$, $\mathbf{S}\uparrow$, digestion

12A-5 Coprecipitation:

a process in which normally <u>soluble</u> compounds are carrier out of solution by a precipitate.

Four types of coprecipitation:

- 1. surface adsorption
- 2. mixed-crystal formation
- 3. occlusion
- 4. mechanical entrapment
 - $1, 2 \rightarrow$ equilibrium processes
 - 3, 4 \rightarrow arise from the kinetics of crystal growth

1. Surface adsorption

```
specific <u>surface areas(SA)</u> \uparrow \rightarrow adsorption \uparrow SA = (cm<sup>2</sup>)/mass(g)
```


- Adsorption, a normally soluble compound is carried out of soln on the surface of a coagulated colloid. This compound consists of the primarily adsorbed ion and an ion of opposite charge from the counter-ion layer.
 - ex: in chloride analysis

primary adsorbed ion : Ag⁺

counter-ion layer : NO₃⁻ or other anions

 \rightarrow AgNO₃ (normally soluble) is coprecipitated with the AgCl.

*Methods for Minimizing Adsorbed Impurities on Colloids

a. Digestion:

particle size $\uparrow \rightarrow$ specific surface area $\downarrow \rightarrow$ adsorption \downarrow

- b. Washing with volatile electrolyte soln
 - ex: in Ag⁺ analysis, primary adsorbed ion : Cl⁻ washing with an acidic soln \rightarrow counter-ion layer : H⁺ \rightarrow HCl volatilized when ppt is dried
- c. Reprecipitation, double precipitation

2. Mixed-crystal formation

a contaminant ion replaces an ion in the lattice of a crystal

- a. the same charge
- b. the size differ < 5 %

c. salt : the same crystal class

ex: (a). PbSO₄ in BaSO₄

 $BaCl_2$ + soln containing sulfate, lead & acetate

 \rightarrow BaSO₄ + PbSO₄ (Pb + acetate \rightarrow lead acetate)

(b). MgKPO₄ in MgNH₄PO₄

- (c). SrSO₄ in BaSO₄
- (d). MnS in CdS

3. Occlusion

A compound is trapped within a pocket formed during rapid crystal growth.

4. Mechanical entrapment

Several crystals grow together & in so doing trap a portion of the solution in a tiny pocket.

3 & 4 : rate of ppt formation \downarrow (low supersaturation)

 \rightarrow occlusion & mechanical entrapment at a minimum

Digestion decrease these coprecipitation.

*Coprecipitation error: negative or positive errors

Ex: (a). in Cl analysis, colloidal AgCl + AgNO₃ \rightarrow (+) error

(b). in Ba²⁺ \rightarrow BaSO₄ analysis if Ba(NO₃)₂ (larger FW than BaSO₄) \rightarrow (+) error if BaCl₂ (FW: BaCl₂ < BaSO₄) \rightarrow (-) error

12A-6 Precipitation from Homogeneous Solution (Table 12-1)

Homogeneous precipitation:

a precipitate is formed by slow generation of a precipitating reagent homogeneously throughout a solution.

Solid formed by homogeneous precipitation are generally purer and more easily filtered than precipitate generated by direct addition of a reagent to the analyte solution.

Fig. 12-5 Al(OH)₃ formed by the direct addition of NH₃(left) and the homogeneous production of hydroxide(right).

ex: urea
$$\rightarrow$$
 OH⁻ for Fe(III) & Al
(H₂N₂)₂CO + 3H₂O $\xrightarrow{100^{\circ}C1-2 \text{ hr}}$ CO₂ + 2NH₄⁺ + 2OH⁻

*Filtration

1.Sintered-glass filtering crucible: 110 $^{\circ}C \sim 250 ^{\circ}C$

crystalline or granular type ppt

pore: coarse, medium, fine

- 2. Gooch crucible with an asbestos mat: 800 $\,^\circ\mathrm{C}\,{\sim}\,1000\,\,^\circ\mathrm{C}$
- 3. Filter paper

ashless filter paper : residue < 0.1 mg.

*Washing the Precipitate

wash soln

- 1. Wash out all impurity but leave it unchanged in composition.
- 2. Not introduce insoluble product into ppt
- 3. completely volatile at drying temp of ppt
 - pure water \rightarrow peptization
 - electrolyte soln

12A-7 Drying and ignition of Precipitates

12B Calculation of Results from Gravimetric Data

$\frac{\frac{R \times FW_{species}}{FW_{ppt}}}{Gravimetric factor (GF)} \qquad \qquad \frac{g \ ppt \times GF}{g \ impure \ sample} = \% \ species \ sought}$
Ex. 12-1 . The Ca in a 200.0-mL sample of a natural water was determined by precipitating the cation as CaC ₂ O ₄ . The ppt was filtered, washed, and ignited in a crucible with an empty mass of 26.6002 g. The mass of the crucible plus CaO (56.077 g/mol) was 26.7134 g. Calculate the con. of Ca (40.078 g/mol) in the water in units of grams per 100 mL.
mass of CaO = 26.7134 - 26.6002 = 0.1132 g moles Ca = moles CaO
amount of Ca = $\frac{0.1132 \text{ g}}{56.077 \text{ g/mol}} = 2.0186 \text{ mmol}$
$\frac{\text{mass Ca}}{100 \text{ mL}} = \frac{2.0186 \text{ mmol} \times 40.078 \text{g/mol}}{200 \text{ mL}} \times 100 \text{ mL} = 0.04045 \text{ g/100 mL}$
 Ex. 12-2. An iron ore was analyzed by dissolving a 1.1324-g sample in c-HCl. The resulting solution was diluted with water, and the iron(III) was precipitated as the hydrous oxide Fe₂O₃ · xH₂O by the addition of NH₃. After filtration and washing, the residue was ignited at a high temp. to give 0.5394 g of pure Fe₂O₃ (159.69 g/mol). Calculate (a) the % Fe (55.847 g/mol) and (b) the % Fe₃O₄ (231.54 g/mol) in the sample.
amount $Fe_2O_3 = \frac{0.5394 \text{ g}}{159.69 \text{ g/mol}} = 3.3778 \text{ mmol}$
(a) mass Fe = 3.3778×10^{-3} mol $\times 2 \times 55.847$ g/mol = 0.37728 g
% Fe = $\frac{0.37728g}{1.1324g} \times 100\% = 33.317 \approx 33.32\%$
(b) $3 \text{ Fe}_2 \text{O}_3 \rightarrow 2 \text{ Fe}_3 \text{O}_4 + \frac{1}{2} \text{ O}_2$
mass Fe ₃ O ₄ = $3.3778 \text{ mmol} \times \frac{2}{3} \times 231.54 \text{ g/mol} = 0.52140 \text{ g}$
% Fe ₃ O ₄ = $\frac{0.52140g}{1.1324g} \times 100\% = 46.044 \approx 46.04\%$

Ex. 12-3. A 0.2356-g sample containing only NaCl (58.44 g/mol) and BaCl₂ (208.25 g/mol) vielded 0.4637 g of dried AgCl(143.32 g/mol). Calculate the percent of each halogen compound in the sample. let x = mass of NaCl, y = mass of BaCl₂ \rightarrow x + y = 0.2356 g mass AgCl from NaCl = $\frac{x \text{ g} \times 143.32 \text{ g/mol}}{58.44 \text{g/mol}} = 2.4524 x \text{ g}$ mass AgCl from BaCl₂ = $\frac{y g \times 2 \times 143.32 \text{ g/mol}}{208.23 \text{ g/mol}} = 1.3766 y \text{ g}$ 2.4524x g + 1.3766y g = 2.4524x g + 1.3766 (0.2356 - x) g = 0.4637 g1.0758x = 0.13942x = mass NaCl = 0.12960 g NaCl% NaCl = $\frac{0.12956 \text{ g NaCl}}{0.2356 \text{ g}} \times 100\% = 55.01\%$ % BaCl₂ = 100 % - 55.01% = 44.99 % Sample: <u>NaCl + NaBr + inert</u> = 1.000 g Ex. 12-4. Ag: 107.87, excess AgNO₃ \Downarrow Cl: 35.45 $\underline{AgCl(s) + AgBr(s)} = 0.5260 \text{ g}$ 22.99 Na: Cl_2 treatment \Downarrow 79.90 Br: $\underline{AgCl(s) + AgCl(s)} = 0.4260 \text{ g}$ NaCl = ? %; NaBr = ? %**Ans**: if NaCl = x g, NaBr = ygg of AgCl(s) = $\frac{x \times 143.32}{58.44}$; g of AgBr(s) = $\frac{y \times 187.77}{102.89}$ $\frac{x \times 143.32}{58.44} + \frac{y \times 187.77}{102.89} = 0.5260 \text{ g}$ % NaCl = $\frac{x \times 100}{1.000}$ $\frac{x \times 143.32}{58.44} + \frac{y \times 143.32}{102.89} = 0.4260 \text{ g}$ $\% \text{ NaBr} = \frac{y \times 100}{1.000}$

12C Applications of Gravimetric Methods

- (a). most inorganic anions and cations
- (b). neutral species: water, SO₂, CO₂, I₂.
- (c). organic substances: lactose in milk products, salicylates in drug preparations, nicotine in pesticides, cholesterol in cereals, benzaldehyde in almond extracts

12C-1 Inorganic	precipitating	agents (Table	12-2)
------------------------	---------------	---------------	-------

PrecipitatingAgent	Element Precipitated
NH ₃ (aq) Be((BeO), Al(Al ₂ O ₃), Sc(Sc ₂ O ₃), Cr(Cr ₂ O ₃), Fe(Fe ₂ O ₃),
Ga	$(Ga_2O_3), Zr(ZrO_2), In(In_2O_3), Sn(SnO_2), U(U_3O_8)$
H ₂ S Cu(CuO)), $Zn(ZnO \text{ or } ZnSO_4)$, $Ge(GeO_2)$, $As(As_2O_3 \text{ or } As_2O_5)$,
Mo(MoC	D_3), Sn(SnO ₂), Sb(Sb ₂ O ₃ or Sb ₂ O ₅), Bi(Bi ₂ S ₃)
$(NH_4)_2S$	$Hg(HgS), Co(Co_3O_4)$
$(NH_4)_2HPO_4$	$Mg(MgP_2O_7)$, $Al(AlPO_4)$, $Mn(Mn_2P_2O_7)$, $Zn(Zn_2P_2O_7)$,
	$Zr(Zr_2P_2O_7)$, $Cd(Cd_2P_2O_7)$, $Bi(BiPO_4)$
H_2SO_4	Li, Mn, Sr, Cd, Pb, Ba (all as sulfates)
H_2PtCl_6	$K(K_2PtCl_6 \text{ or } Pt), Rb(Rb_2PtCl_6), Cs(Cs_2PtCl_6)$
$H_2C_2O_4$	Ca(CaO), Sr(SrO), Th(ThO ₂)
$(NH_4)_2MoO_4$	Cd(CdMoO ₄), Pb (PbMoO ₄)
HCl	Ag(AgCl), Hg(Hg ₂ Cl ₂), Na(as NaCl from butyl alcohol),
	Si(SiO ₂)
AgNO ₃	Cl(AgCl), Br(AgBr), I(AgI)
$(NH_4)_2CO_3$	Bi(Bi ₂ O ₃)
NH ₄ SCN	$Cu[Cu_2(SCN)_2]$
NaHCO ₃	Ru, Os, Ir(precipitated as hydrous oxides; reduced with H ₂ to
	metallic state)
HNO ₃	$Sn(SnO_2)$
H ₅ IO ₆	$Hg[Hg_5(IO_6)_2]$
NaCl, $Pb(NO_3)_2$	F(PbClF)
BaCl ₂	$SO_4^{2-}(BaSO_4)$
MgCl ₂ , NH ₄ Cl	$PO_4^{3}(MgP_2O_7)$

12C-2 Reducing agents (Table 12-3)

Reducing agents	Analyte	Reducing agents	Analyte
SO ₂	Se, Au	НСООН	Pt
$SO_2 + H_2NOH$	Te	NaNO ₂	Au
H ₂ NOH	Se	SnCl ₂	Hg
$H_2C_2O_4$	Au	Electrolytic	Co, Ni, Cu, Zn, Ag,
H ₂	Re, Ir	reduction	In, Sn, Sb, Cd, Re, Bi

12C-4 Organic Functional Group Analysis (Table 12-4)

Functional Group	Basis for Method	Reaction and product Weighed*
Carbonyl	Mass of precipitate with 2,4-dinitrophenylhydrazine	$\frac{\text{RCHO} + \text{H}_2\text{NNHC}_6\text{H}_3(\text{NO}_2)_2 \rightarrow}{\text{R-CH=NNHC}_6\text{H}_3(\text{NO}_2)_2}(\text{s}) + \text{H}_2\text{O}}{(\text{RCOR' reacts similarly})}$
Aromatic Carbonyl	Mass of CO_2 formed at 230°C in quinoline; CO_2 distilled, absorbed and weighed	ArCHO $\xrightarrow{230 \ ^{\circ}C}$ Ar $+\overline{CO_2}(g)$
Methoxyl and ethoxyl	Mass of AgI formed after distillation and decomposition of CH_3I or C_2H_5I	$ROCH_{3} + HI \rightarrow ROH +$ $RCOOCH_{3} + HI \rightarrow RCOOH + CH_{3}I$ $ROC_{2}H_{5} + HI \rightarrow ROH + C_{2}H_{5}I$ $CH_{3}I + Ag^{+} + H_{2}O \rightarrow AgI(s) + CH_{3}OH$

Aromatic	Mass loss of Sn	$\mathrm{RNO}_2 + 1.5 \mathrm{Sn}(\mathrm{s}) + 6\mathrm{H}^+ \rightarrow$
nıtro		$RNH_2 + 1.5Sn^{4+} + 2H_2O$
Azo	Mass loss of Cu	$RN=NR'+2Cu(s)+4H^+ \rightarrow$
		$RNH_2 + R'NH_2 + 2Cu^{2+}$
Phosphate	Mass of Ba salt	$ROPO(OH)_2 + Ba^{2+} \rightarrow ROPOO_2Ba(s) + 2H^+$
Sulfamic acid	Mass of $BaSO_4$ after oxidation with HNO_2	$RNHSO_3H + HNO_2 + Ba^{2+} \rightarrow$
		$ROH + BaSO_4(s) + N_2 + 2H^+$
Sulfinic acid	Mass of Fe ₂ O ₃ after ignition of Fe(III) sulfinate	$3ROSOH + Fe^{3+} \rightarrow (ROSO)_3Fe(s) + 3H^+$
		$(\text{ROSO})_{3}\text{Fe} \xrightarrow{O}_{2} \text{CO}_{2} + \text{H}_{2}\text{O} + \text{SO}_{2} + \boxed{\text{Fe}_{2}\text{O}_{3}}(s)$

12C-5 Volatilization Gravimetry

- 1. For water
 - (a). Direct method: solid desiccant collection
- (b). Indirect method: heating \rightarrow loss of weight
 - water is not the only compound volatilized)
 - decomposition & change in water
- 2. For carbonate: carbon dioxide

Solid adsorbent: Ascarite II - NaOH on a nonfibrous silicate

ex: For NaHCO₃ in antacid tablets NaHCO₃(aq) + H₂SO₄ (aq) \rightarrow CO₂ (g) + H₂O(l) + NaHSO₄(aq) \downarrow absorption tube

 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

- 3. For sulfides & sulfites: H_2S or SO_2
- 4. For carbon & hydrogen in organic compound
 - \rightarrow combustion product : H₂O & CO₂

