26 Molecular Absorption Spectrometry

26A Ultraviolet and Visible Molecular Absorption Spectroscopy

26A-1 Absorbing species

Molecules Absorbing UV/Visible radiation

Qualitative

Quantitative

Absorption by organic Compounds

- (1) shared electrons that participate directly in bond formation and are thus associated with more than one atom
- (2) unshared outer electrons that are largely localized about such atoms as oxygen, the halogen, sulfur and nitrogen.

Species with unsaturated bonds generally absorb in the UV

Chromophore: unsaturated organic functional groups that absorb in the UV/visible region.

Table 26-1 Absorption Characteristics of Some Common	Organic Chromophores
--	----------------------

Chromophore	Example	Solvent	λ_{max} , nm	٤ _{max}
Alkene	$C_6H_{13}CH=CH_2$	n-Heptane	177	13,000
Conjugated alkene	CH ₂ =CHCH=CH ₂	n-Heptane	217	21,000
Alkyne	$C_5H_{11}C \equiv C - CH_3$	n-Heptane	178	10,000
			196	2,000
			225	160
Carbonyl	$CH_3(C=O)CH_3$	n-Hexane	186	1,000
-			280	16
	$CH_3(C=O)H$	n-Hexane	180	Large
			293	12
	$CH_3(C=O)NH_2$	Water	214	60
Carboxyl	CH ₃ COOCH	Ethanol	204	41
Azo	CH ₃ N=NCH ₃	Ethanol	339	5
Nitro	CH ₃ NO ₂	Isooctane	280	22
Nitrate	C ₂ H ₅ ONO ₂	Dioxane	270	12
Nitroso	C ₄ H ₉ NO	Ethyl ether	300	100
			665	20
Aromatic	Benzene	n-Hexane	204	7,900
			256	200

Table 26-2 Absorption by Organic Compounds Containing Unsaturated Heteroatoms

Compound	λ_{max} , nm	ε _{max}	Compound	λ_{max} , nm	ε _{max}
CH ₃ OH	167	1480	$(CH_3)_2S$	229	140
$(CH_3)_2O$	184	2520	$(CH_3)_2NH_2$	215	600
CH ₃ Cl	173	200	$(CH_3)_3N$	227	900
CH ₃ I	258	365			

Absorption by Inorganic Species Charge-Transfer Absorption

Fig. 26-2, 3 Fig. 26-4

Fig. 26-4 Absorption spectra of aqueous charge-transfer complexes.

Quantitative: UV/visible spectrophotometry

Qualitative: infrared spectrophotometry

26A-2 Qualitative Applications of UV/Visible Spectroscopy

Table 26-1

Solvents (Fig. 24-14, Table 26-3)

The Effect of Slit Width (Fig. 26-5)

The Effect of Scattered Radiation at the Wavelength Extremes of a Spectrophotometer (Fig. 26-6)

Table 26-3 Solvents for the ultraviolet and visible regions

Solvent	Lower wavelength limit, nm	Solvent	Lower wavelength limit, nm	Solvent	Lower wavelength limit, nm
Water	180	Cyclohexane	200	Acetone	330
Ethanol	220	Cellosolve	320	Dioxane	320
Hexane	200	Diethyl ether	210	CCl ₄	260

Fig. 26-5 Spectra for reduced cytochrome c obtained with four spectral bandwidths: (1) 20 nm, (2) 10 nm, (3) 5 nm, and (4) 1 nm. At bandwidths < 1 nm, peak noise became pronounced.

Fig. 26-6 Spectra of cerium(IV) obtained with a spectrophotometer having glass optics (A) and quartz optics (B). The false peak in A occurs when stray radiation is transmitted at long wavelengths.

26A-3 Quantitative Applications

- 1. Wide applicability.
- 2. High sensitivity
- 3. Moderate to high selectivity
- 4. Good accuracy
- 5. Easy and convenience

Direct measurement

Nitrate in nature water: NO3: 220 nm

- 1. Absorbance at 220 nm
- 2. Absorbance at 270 nm (correct for the interference)

Indirect measurement

 $\begin{array}{rl} 12 \ \text{MoO}_4^{\ 2^-} + \text{H}_2\text{PO}_4^{\ -} + 24 \ \text{H}^+ \Leftrightarrow & [\text{H}_2\text{PMo}_{12}\text{O}_{40}]^- + 12 \ \text{H}_2\text{O} \\ & 12 \text{-molybdophosphoric acid, } 12 \text{-MPA (yellow)} \\ & \downarrow \text{ ascorbic acid or stannous chloride} \\ & \text{molybdenum blue (650~890 nm strong absorbance)} \end{array}$

Application to Absorbing Species

common organic chromophore (Tab. 26-1)

inorganic species: ions of transition metals and their complexes (color), nitrite, nitrate, chromate ion, oxides of nitrogen, element halogens and ozone.

Applications to Nonabsorbing Species

react with chromophoric reagents \rightarrow products that absorb strongly in the UV and visible regions

		0	
Inorganic reagent	t Analyte	Organic chelating agent	Analyte
thiocyanate	Fe, Co, Mo	diethyldithiocarbamate	Cu
anion of H ₂ O ₂ e	Ti, V, Cr	diphenylthiocarbazone	Pb
iodide	Bi, Pd, Te	1,10-phenanthroline	Fe
Ce(IV)	low-molecular-weight aliphatic alcohol	dimethylglyoxime	Ni
CH, N-C, SNa + M CH, N-N=C, N-N-C H N-N=C, SH	$f^{2+} \rightleftharpoons C_{2}H_{5} = N - C_{5}M_{5}C - N_{2}H_{5} + 2$ $F_{0}H_{5} = C_{0}H_{5} = N - N - N - N - N - N - N - N - N - N$	Na* .C ₆ H ₅ + 2H* H	

Fig. 26-7 Typical chelating reagents for absorption. (a) Diethyldithiocarbamate. (b) Diphenylthiocarbazone.

Procedural Details

development of conditions that yield a reproducible relationship (preferably linear) between absorbance and analyte concentration.

1. Wavelength Selection

made a wavelength corresponding to an absorption peak \rightarrow maximum sensitivity

2. Variables That Influence Absorbance

solvent, pH of the solution, temperature, high electrolyte concentrations and presence of interfering substances.

3. Determination of the Relationship Between Absorbance and Concentration

Calibration standards

The measured absorbance of a given solution will usually vary somewhat from instrument to instrument. Thus, determination should *never* be based on molar absorptivities found in the literature.

4. The Standard Addition Method

standard addition:

a known amount of analyte + a second aliquot sample \rightarrow

the difference in Abs. \rightarrow calculate the analyte conc. of the sample

$$A_{2} = \frac{\varepsilon b V_{x}c_{x}}{V_{t}} + \frac{\varepsilon b V_{s}c_{s}}{V_{t}} = kV_{s}c_{s} + kV_{x}c_{x} \qquad \begin{array}{l} \text{Plot of } A_{s} \text{ as a function of } V_{s} \rightarrow \\ \hline A_{s} = mV_{s} + b \end{array}, \quad \boxed{m = k}, \quad \boxed{b = k V_{x}c_{x}} \\ \hline m = \frac{kc_{s}}{kV_{x}c_{x}} \rightarrow \boxed{c_{x} = \frac{bc_{s}}{mV_{x}}}, \quad \left(\frac{S_{c}}{c_{x}}\right)^{2} = \left(\frac{S_{m}}{m}\right)^{2} + \left(\frac{S_{b}}{b}\right)^{2} \rightarrow \boxed{s_{c} = c_{x}\sqrt{\left(\frac{S_{m}}{m}\right)^{2} + \left(\frac{S_{b}}{b}\right)^{2}}}$$

Ex. 26-1 10-mL aliquots of a natural water sample were pipetted into 50.00-mL volumetric flasks. Exactly 0.00, 5.00, 10.00, 15.00 and 20.00 mL of a standard solution containing 11.1 ppm of Fe³⁺ were added to each, followed by an excess of thiocyanate ion to give the red complex Fe(SCN)²⁺. After dilution to volume, absorbances for the five solutions, measured with a photometer equipped with a green filter, were found to be 0.240, 0.437, 0.621, 0.809 and 1.009, respectively (.0982-cm cells). (a) What was the [Fe³⁺] in the water sample? (b) Calculate the standard deviation of the slope, the intercept and the [Fe].

(a)
$$c_s = 11.1 \text{ ppm}, V_s = 10.00 \text{ mL}, V_t = 50.00 \text{ mL}$$

 $m = 0.03820, b = 0.2412$
 $A_s = 0.03820 V_s + 0.2412$
 $c_x = \frac{bc_s}{mV_x} = \frac{(0.2412)(11.1 \text{ ppmFe}^{3+})}{(0.03820/\text{mL})(100\text{mL})} = 7.01 \text{ ppmFe}^{3+}$
(b) $s_m = 3.07 \times 10^{-4} \text{ and } s_b = 3.76 \times 10^{-3}$
 $s_c = c_x \sqrt{\left(\frac{S_m}{m}\right)^2 + \left(\frac{S_b}{b}\right)^2}$
 $= 7.01 \sqrt{\left(\frac{3.07 \times 10^{-4}}{0.03820}\right)^2 + \left(\frac{3.76 \times 10^{-3}}{0.2412}\right)^2} = 0.12 \text{ ppmFe}^{3+}$

Ex. 26-2 The single-point standard addition method was used in the determination of phosphate by the molybdenum blue method. A 2.00-mL urine sample was treated with molybdenum blue reagents to produce a species absorbing at 820 nm, after which the sample was diluted to 100.00 mL. A 25.00-mL aliquot gave an absorbance of 0.428 (solution 1). Addition of 1.00 mL of a solution containing 0.0500 mg of phosphate to a second 25.0-mL aliquot gave an absorbance of 0.517. Use these data to calculate the number of milligrams of phosphate per milliliter of the sample.

$$A_{1} = \varepsilon bc_{x} \qquad A_{2} = \frac{\varepsilon b V_{x}c_{x}}{V_{t}} + \frac{\varepsilon b V_{s}c_{s}}{V_{t}} = \frac{\varepsilon b(V_{x}c_{x} + V_{s}c_{s})}{V_{t}}$$
$$c_{x} = \frac{A_{1}c_{s}V_{s}}{A_{2}V_{t} - A_{1}V_{x}} = \frac{0.428 \times 0.0500 \text{mgmL}^{-1} \times 1.00 \text{mL}}{0.517 \times 26.00 \text{mL} - 0.428 \times 25.00 \text{mL}} = 0.00780 \text{mgmL}^{-1}$$
$$\text{conc. of phosphate} = 0.00780 \text{ mgmL}^{-1} \times 100/2.00 = 0.390 \text{ mg/mL}$$

6. Analysis of Mixture (Fig. 26-9)

 $\mathbf{A_{total}} = \mathbf{A}_1 + \mathbf{A}_2 + \cdots + \mathbf{A}_n = \varepsilon_1 b c_1 + \varepsilon_2 b c_2 + \cdots + \varepsilon_n b c_n$

$$\mathbf{A}_1 = \boldsymbol{\varepsilon}_{\mathrm{M}1} b \boldsymbol{c}_{\mathrm{M}} + \boldsymbol{\varepsilon}_{\mathrm{N}1} b \boldsymbol{c}_{\mathrm{N}}$$

$$\mathbf{A}_2 = \boldsymbol{\varepsilon}_{\mathrm{M2}} b \boldsymbol{c}_{\mathrm{M}} + \boldsymbol{\varepsilon}_{\mathrm{N2}} b \boldsymbol{c}_{\mathrm{N}}$$

Fig. 26-9 Absorption spectrum of a two-component mixture (M+N), with spectra of the individual components. Wavelengths λ_1 and λ_2 are chosen for the analysis because the individual component spectra are significantly different at these two wavelength.

Ex. 26-3 Palladium (II) and gold (III) can be analyzed simultaneously through reaction with methiomeprazine ($C_{19}H_{24}N_2S_2$). The absorption maximum for the Pd complex occurs at 480 nm, while that for the Au complex is at 635 nm. Molar absorptivity data at these wavelengths are

	Molar Absorptivity, ε		
	480 nm	635 nm	
Pd complex	3.55×10^{3}	5.64×10^{2}	
Au complex	2.96×10^{3}	1.45×10^{4}	

A 25.0-mL sample was treated with an excess of methiomeprazine and subsequently diluted to 50.0 mL. Calculate the molar concentrations of Pd(II), C_{Pd} , and Au(III), C_{Au} , in the sample if the diluted solution had an absorbance of 0.533 at 480 nm and 0.590 at 635 nm when measured in a 1.00-cm cell.

At 480 nm:
$$0.533 = (3.55 \times 10^3)(1.00) \times C_{Pd} + (2.96 \times 10^3)(1.00) \times C_{Au}$$

$$C_{Pd} = \frac{0.533 - 2.96 \times 10^3 \times C_{Au}}{3.55 \times 10^3}$$

At 635 nm: $0.590 = (5.64 \times 10^2)(1.00) \times C_{Pd} + (1.45 \times 10^4)(1.00) \times C_{Au}$

$$0.590 = 5.64 \times 10^{2} \times \frac{(0.533 - 2.96 \times 10^{3}) \times C_{Au}}{3.55 \times 10^{3}} + 1.45 \times 10^{4} \times C_{Au}$$
$$= 0.0847 - 4.70 \times 10^{2} \times C_{Au} + 1.45 \times 10^{4} \times C_{Au}$$
$$C_{Au} = \frac{(0.590 - 0.0847)}{1.403 \times 10^{4}} = 3.60 \times 10^{-5} M$$
$$C_{Pd} = 0.53 - \frac{2.96 \times 10^{3} \times 3.60 \times 10^{-5}}{3.55 \times 10^{3}} = 1.20 \times 10^{-4} M$$
$$Au(III) = 7.20 \times 10^{5} \text{ and } Pd(II) = 2.40 \times 10^{-4} M$$

26A-4 Photometric and Spectrophotometric Titrations

one or more of the reactants or products absorb radiation or that an absorbing indicator be present.

Titration Curves

plot of absorbance (correct for volume change) as a function of titrant volume: consists of two straight-line regions with different slopes

→終點: intersection of extrapolated linear portions of the two lines

Fig. 26-12 Typical photometric titration curves. Molar absorptivities of the analyte titrated, the product and the titrant are ε_A , ε_P and ε_T , respectively.

(Fig. 26-12)	Analyte	Titrant	Product
(a)	nonabsorbing ($\varepsilon = 0$)	absorbing ($\varepsilon > 0$)	$(\varepsilon = 0)$
	thiosulfate	triiodide	
(b)	colorless ($\varepsilon = 0$)	$(\varepsilon = 0)$	Absorbing ($\varepsilon > 0$)
	iodide	iodate ion	triiodide

Application of Photometric Titrations

more accurate than a direct photometric determination
presence of other absorbing species may not interfere
more dilute solution may be titrated
photometric end point \rightarrow applied to all types of reaction
ex: successive titration of Bi(III) and Cu(II). At 745 nm, cations, reagent and the Bi complex no absorb,
but the Cu complex \rightarrow absorbance \uparrow additional
reagent cause no further abs. change
\rightarrow two well-defined end points.

Fig. 26-13 Photometric titration curve at 745 nm for 100 mL of a solution that was 2.0×10^{-3} M in Bi³⁺ and Cu²⁺

26B Automated Photometric and Spectrophotometric Methods

26C Infrared Absorption Spectroscopy

Qualitative > Quantitative

26C-1 Infrared Absorption Spectra

exception of a homonuclear species, such as molecular H_2 , O_2 and N_2 , all moleculars, organic and inorganic, absorb IR radiation.

Fig. 26-20 Infrared spectrum for n-butanal (nbutyraldehyde).